Posts filed under 'math'

Which One Doesn’t Belong? Wins Mathical Award

Which One Doesn't Belong w awardChristopher Danielson, a mathematics author, teacher, and curriculum developer from Minnesota, has won the Mathical Prize for his book, Which One Doesn’t Belong? A Shapes Book.

The award will be presented to Danielson on April 22 by the Mathematical Sciences Research Institute (MSRI) at the National Math Festival in Washington, DC. Danielson won the award in the Grades 3-5 category.

“For a number of years I have longed for a better shapes book,” said Danielson. “I wanted a shapes book that gives space for noticing relationships, asking questions, and thinking together,” said Danielson. “I designed Which One Doesn’t Belong? to be an invitation to a mathematical conversation.”

The book–which is intended to be used by children, parents, and teachers–features sets of four shapes with the recurring question, “which one doesn’t belong?’ Any of the shapes can be the right answer; the key is getting kids to justify their answer in their own language. The school version comes with an extensive teacher’s guide, including an “answers key” that describes one possible argument that can be made for each shape in the book. Which One Doesn’t Belong? and the teacher’s guide can both be ordered from Stenhouse.

Which One Doesn’t Belong? encourages children to use mathematical thinking to explore new concepts,” wrote the committee who awarded the prize. “The layout is brilliant and in classroom testing, children were active readers, enthusiastic to share their insights and justifications in the discussion. Perhaps the best feature is that questions have no single, simple answer!”

Danielson has worked with math learners of all ages—12 year-olds in his former middle school classroom, Calculus students at Normandale Community College, teachers in professional development, and young children and their families at Math On-A-Stick at the Minnesota State Fair. He designs curriculum at Desmos. He is the author of Common Core Math For Parents For Dummies, the shapes book Which One Doesn’t Belong?, and the forthcoming counting book How Many? He blogs about teaching on Overthinking My Teaching, and for parents at Talking Math with Your Kids. He earned his B.A. in mathematics from Boston University, his M.A. in Education from the University of Michigan, and his Ph.D. in Mathematics Education from Michigan State University.

The Mathical Book Prize is organized by MSRI in partnership with the National Council for Teachers of English (NCTE) and the National Council for Teachers of Mathematics (NCTM).

Add comment April 21st, 2017

Read, Apply, Learn

At Stenhouse, we spend a lot of time thinking about how to create resources that are useful for teachers. We are always eager to hear how teachers, coaches, and administrators use our books, videos, and courses in practice. That’s why we’re especially excited about Jill Gough and Jennifer Wilson’s upcoming NCSM preconference. In it, they’ll be talking about how they use professional literature to grow their teaching practice. How do they apply what they’ve read? How do they collaborate, both in-person and online, to reflect on that application with their colleagues? What new learning and productive changes in teaching practice result from that work?

We asked Jennifer and Jill for a sneak peek of their session, and we’re happy to share it with you here. We hope you can join them in San Antonio, or follow along online.

Read, Apply, Learn
By Jill Gough and Jennifer Wilson

In Kindergarten Reading Workshop this week, the teaching point was when we want to learn new things, we first read what experts say. Now, it is clear that we are preparing our young learners for a unit on nonfiction reading and on research.  What if we transfer that simple, direct teaching point to our own work?

We set three goals this year as a team of teachers committed to narrowing the achievement gap for our learners. These goals are to learn more math, to scale what we learn across our schools, and to more deeply understand the Standards for Mathematical Practices.  With these goals, we have to ask, what do experts say?

We have been reading a lot lately, and we have been considering how to share what we are trying and learning in both our home communities and in a more global community. We are now studying and strongly recommend 5 Practices for Orchestrating Productive Mathematics Discussions by Mary Kay Stein and Margaret Smith, NCTM’s publication, Principles to Action,  The Talent Code: Greatness Isn’t Born. It’s Grown. Here’s How. by Daniel Coyle,  Beyond Answers: Exploring Mathematical Practices with Young Children from Mike Flynn, and Becoming the Math Teacher You Wish You’d Had: Ideas and Strategies from Vibrant Classrooms by Tracy Zager and more.

In Beyond Answers, Mike Flynn suggests “We need to give students the opportunity to develop their own rich and deep understanding of our number system. With that understanding, they will be able to develop and use a wide array of strategies in ways that make sense for the problem at hand.” How might we slow down to afford our students the opportunity to develop their own deep understanding and grow their own mathematical flexibility? What will be gained when our young learners have acquired a deep foundation of understanding, confidence, and competence?

BeyondAnswersFlynn

In Becoming the Math Teacher You Wish You’d Had, Tracy Zager encourages us to engage our learners in productive struggle so that they are “challenged and learning”. She writes “As long as learners are engaged in productive struggle, even if they are headed toward a dead end, we need to bite our tongues and let students figure it out. Otherwise, we rob them of their well-deserved, satisfying, wonderful feelings of accomplishment when they make sense of problems and persevere.”

BecomingMathZager

So what does productive struggle look like in the classroom with students? What does productive struggle look like in professional learning communities with teachers? How do we learn to bite our tongues and give students time to figure it out? What stories can you share about students engaged in productive struggle?

What if we take ideas and apply them in our learning and teaching? What might we learn about our students, ourselves, and mathematics? What is to be gained by reflecting on our learning and sharing our thinking with our PLN here, there, and everywhere?

We look forward to considering these questions Sunday at our NCSM pre-conference session. And we look forward to sharing what we learn and discuss with those who can’t attend in real-time on Twitter and later through our blogs.

Jill (@jgough)  – Sneak Peek on Flexibility: Experiments in Learning by Doing

Jennifer (@jwilson828) – Sneak Peek on Empowering Learners: Easing the Hurry Syndrome

#NCSM17 #LearnAndShare #SlowMath

Flynn, Michael. 2017 Beyond Answers: Exploring Mathematical Practices with Young Children. Portland, ME: Stenhouse Publishers.

Zager, Tracy. 2017. Becoming the Math Teacher You Wish You’d Had: Ideas and Strategies from Vibrant Classrooms. Portland, ME: Stenhouse Publishers.

 

Jill Gough learns, serves, and teaches as the Director of Teaching and Learning at Trinity School. Previously, she taught in the Westminster Schools, after 14 years of teaching in public schools in Mississippi and at the Kiski School of Pennsylvania. Jill received the Presidential Award for Excellence in Mathematics and Science Teaching in 1998 and Mathematical Association of America’s Sliffe Award in 2006 for excellence in teaching junior high.
Jennifer Wilson has been an educator for 24 years, spending 20 of those years teaching and learning mathematics with students at Northwest Rankin High School in Flowood, Mississippi. She currently teaches Advanced Placement Calculus and Geometry and also serves as a Curriculum Specialist with the Rankin County School District. Jennifer is an advocate for #slowmath, in which students and teachers take the time to enjoy mathematics.

 

 

Add comment April 1st, 2017

See you at NCSM and NCTM

We are looking forward to seeing you at this year’s NCSM and NCTM conferences in San Antonio.

At NCSM we will be exhibiting our books at booth #404.

At NCTM you can find us at booth #1325. Stop by to meet our authors:

Thursday
9:30-10: Anne Collins (Accessible Algebra)
10-10:30: Lucy West (Adding Talk to the Equation)
11:30-Noon: Chris Moynihan (Math Sense)
12:30-1: Mike Flynn (Beyond Answers)
1-1:30: Jessica Shumway (Number Sense Routines)
1:30-2: Nancy Anderson (What’s Right About Wrong Answers)
3-3:30: Christopher Danielson (Which One Doesn’t Belong?)

Friday
10-10:30: Chris Confer (Small Steps, Big Changes)
11-11:30: Kassia Omohundro Wedekind  (Math Exchanges)
3-3:30: Tracy Zager (Becoming the Math Teacher You Wish You’d Had)

Stop by at both conferences to browse and purchase our latest titles, pick up our free tote bag, and for a chance to win $1,000 in Stenhouse titles! Download a full schedule of Stenhouse authors presenting at both conferences.

Add comment March 31st, 2017

Now Online: Accessible Algebra

Accessible AlgebraAccessible Algebra is for any pre-algebra or algebra teacher who wants to provide a rich and fulfilling experience to students as they develop new ways of thinking through and about algebra.

Each of the thirty lessons in this book identifies and addresses a focal domain and standard in algebra, then lays out the common misconceptions and challenges students may face as they work to investigate and understand problems.

Authors Anne Collins and Steven Benson describe classroom scenarios in each lesson and also suggest ways teachers may assign a problem or activity, how to include formative assessment strategies, and suggestions for grouping students.

Each lesson includes sections on how to support struggling students as well as additional resources and readings.

We just posted the full preview online!

Add comment March 27th, 2017

Now Online: Becoming the Math Teacher You Wish You’d Had

becoming-the-math-teacher-you-wish-youd-hadTracy invites you on a journey through this most magnificent book of stories and portraits…This book turns on its head the common misconception of mathematics as a black-and-white discipline and of being good at math as entailing ease, speed, and correctness. You will find it full of color, possibility, puzzles, and delight…let yourself be drawn in.

— Elham Kazemi from the foreword

While mathematicians describe mathematics as playful, beautiful, creative, and captivating, many students describe math class as boring, stressful, useless, and humiliating. In Becoming the Math Teacher You Wish You’d Had, Tracy Zager helps teachers close this gap by making math class more like mathematics.

Tracy spent years observing a diverse set of classrooms in which all students had access to meaningful mathematics. She partnered with teachers who helped students internalize the habits of mind of mathematicians as they grappled with age-appropriate content. From these scores of observations, Tracy selected and analyzed the most revealing, fruitful, thought-provoking examples of teaching and learning to share with you in this book.

Through these vivid stories, you’ll gain insight into effective instructional decision making. You’ll engage with big concepts and pick up plenty of practical details about how to implement new teaching strategies.

All teachers can move toward increasingly authentic, delightful, robust mathematics teaching and learning for themselves and their students. This important book helps us develop instructional techniques that will make the math classes we teach so much better than the math classes we took.

Add comment December 15th, 2016

Now Online: Which One Doesn’t Belong?

Danielson’s book reveals the wonder and freedom of expression that many children don’t often experience in mathematics. A single, simple question puts children in a position to speak mathematically even at early ages. Ask students of all ages “Which one doesn’t belong?” and revel in the reasoning and conversation that results.
—Dan Meyer

How can I recommend this highly enough? Christopher Danielson emphasizes the stimulation of curiosity and that math is about making precise things that we—and children—can informally observe, without having to learn any mathematical language first. Which One Doesn’t Belong? is a glorious book for adults and children to explore together, and the Teacher’s Guide makes it into a profound mathematical resource.
—Eugenia Cheng, pure mathematician, University of Sheffield and School of the Art Institute of Chicago, and author of How to Bake Pi

Which One Doesn't Belong student bookWhich One Doesn’t Belong? is a children’s book about shapes. More generally, it’s a book about mathematics. When children look for sameness and difference; when they work hard to put their ideas into words; when they evaluate whether somebody’s else’s justification makes sense—in all of these cases, children engage in real mathematical thinking. They build mathematical knowledge they can be proud of. They develop new questions. They argue. They wonder.

In the accompanying teacher’s guide, author Christopher Danielson equips teachers to get maximum benefit from Which One Doesn’t Belong? Through classroom stories, he models listening to and finding delight in students’ thinking about shapes. In clear, approachable language, Danielson explores the mathematical concepts likely to emerge and helps teachers facilitate meaningful discussions about them.

You can preview portions of the teacher’s guide online now!

2 comments August 4th, 2016

Blogstitute 2016: Unleashing the Power of Games

In the next post in our Blogstitute 2016 series, we turn our attention to math and math games. Linda Dacey, Karen Gartland, and Jayne Bamford Lynch, authors of the Well Played series share with us what they learned when they examined how to make math games increase student learning. Be sure to leave a comment, ask a question, or tweet about this post using #blogstitute16!

Unleashing the Power of Games

Linda Dacey, Karen Gartland, and Jayne Bamford Lynch

Last week, we overheard a conversation between a second grader and his mother as he climbed into her car. His mother greeted him warmly and then added, “We need to stop for groceries on the way home.” The boy responded, “Oh no, I really want to get home and play the math game we learned today. Do we have to go shopping? I really want to play some more!”

More and more classrooms are offering opportunities for students to play math games, and students appear to enjoy them. Most textbooks now incorporate games into their lesson plans and, when teachers set up stations, a math game almost always is included. As we noticed this increased attention to games, we began to think about their use. We wondered about changes we could make in the games that were played or in the ways they were played in order to increase student learning. As a result, we spent eighteen months thinking and writing about math games, and we’d like to highlight a few things we learned.

Play in Partners

pairsOne of the most important insights we gained was that games offer more powerful learning opportunities when students play in teams. When one student plays against another, they rarely discuss strategy or what they are learning, perhaps because they do not want to give away an advantage. As a team of two or three players, students state their reasons for what move they want to make next. As they play, they coteach, practice vocabulary, create mathematical arguments, and critique their teammates’ suggestions. Over and over again, teachers have told us that this simple change has transformed the playing of games in their classrooms.

One of our favorite conversations occurred in a game that required students to match cards with equal values. Students could find matching cards in their hand or trade one of their cards for one in their opponent’s hand (cards are placed faceup) to make a match. Elly and Quinn were partners, and Elly wanted to take their opposing team’s card showing 5 x 9 + 3 x 9 to match their card showing 8 x 9.

Elly: We should take that card to match this one.

Quinn: Wait, wait—how do you know they match?

Elly: It’s that distribution thing.

Quinn: Huh?

Elly: You know, you split the eight nines into five and three of them.

Quinn: Oh yeah, it’s a property or something. We should look it up, but after we win.

They actually did go to the word wall after the game and identify the distributive property. Elly remarked, “I don’t think that’s what I called it, but good to know.”

Increase Time on Task

One of our least favorite games is Around the World. In this game two students are shown a math fact. The student who identifies the correct answer first moves to compete against the next student. The goal is to make it “around the world” by beating each and every classmate. As a result, the student who needs the least practice gets the most, and the student who needs the most practice likely considers only one fact. Most games are not nearly as problematic, but many can be altered to increase time on task. Sometimes we can adjust game rules so that the following occur:

  • There is an opportunity to trade cards (such as in the game described earlier), which increases attention to opponents’ decisions.
  • Points are awarded for finding a move worth more points than opponents found.
  • Both teams respond to a roll of the dice simultaneously and then compare their decisions.
  • Students play cooperatively, with both teams involved in all moves.
  • Students decide on a reward for finding an error in their opponent’s play.

Include Assessment

There are a variety of ways that we can include assessment within game playing. Here are a few:assessment

  • Think about what players might say or do to indicate their mathematical ideas, and make a list of these “look-fors” to focus our observations of students’ play.
  • Create recording sheets for students to complete as they play that we can look at later and that help students recognize that they are held accountable for their learning while playing.
  • Have students complete exit cards after they play a game that can help us decide who might need further instruction or who might need additional challenge. We can offer questions such as If you land on 24, what number would you like to roll? Why? or You were dealt cards showing the numbers 2, 4, 5, and 7. Where would you place these numbers in the equation ___ − ___x = ___ + ___x, to get the greatest value for x? We can also ask questions such as What did you learn from your partner as you played the game?

Games often engage students. With some simple changes we can greatly increase their educational value. We hope these suggestions lead you to identify other ways to unleash the power of games so that they are Well Played.

9 comments June 28th, 2016

Taking apart the “key word” strategy

Today we have a guest blog post from Christine Moynihan, author of the recent math books Common Core Sense and Math Sense. Christine takes a close look at the often-used “key word strategy” and explains why it might not be the best way to help your students get to the right answer.

Taking apart the “key word” strategy
By Christine Moynihan

Christine Moynihan

Christine Moynihan

“Does your answer make sense?” Can you estimate how many times you have asked your students this question in regard to word problems? Even if you are a beginning teacher, I am willing to bet that it has been, on a daily basis, several times a day, five days a week, 180 days a year! Do the math and you will find that you have asked that question of your students a staggering number of times.

Even if your students answer in the affirmative — “Yup, my answer makes sense”!what may pass for their answers making sense is that they’ve  checked to see if their computation is correct; if it is, they assume they are good to go. Tucking their answers back into the context of the problem after they have completed the computation still may not come naturally to them, even though you and their previous teachers have tried to build it into your practice, their practice, and the practice of mathematics in general.

In my pre-service math methods classes, I was told that when I was helping students learn to solve word problems, I had to support them first in making sense of the problem so that they could then determine which operation they had to perform. One way to do this, considered good teaching practice, was to tell them to search for key words.  The next step was to get them to underline those key words, underline the numbers in the problem, and then to use the key words to write a number sentence to solve the problem.  My guess is that many of you may have had the same experience in pre-service as well as having been taught that way when you were in elementary school yourselves.  A few of the key words/phrases you most likely learned are: for addition – in all, altogether, total, increase, combined; for subtraction – difference, left, fewer, decrease, gave away, take away; for multiplication – of, times groups, twice, double; for division – per, groups, share, out of.

So what’s wrong with the key word strategy?  I have had to answer that question countless times in my previous roles of mathematics curriculum specialist and building principal, as well as in my current role of educational consultant. The short answer is that using the key word strategy has limited scope and value.  Further, it can be incredibly misleading and steer students to wrong answers that make no sense at all within the context of the problem.  Additionally, it sends students the wrong message in terms of them thinking that solving problems can be done routinely, formulaically, and without much deep thought.

Let me share a recent experience I had with one of the fourth grade students with whom I have worked for two years.  We were going over a sheet of problems he had done in class, as he had to make corrections to the ones he had gotten wrong.  Now Jared is a very bright fourth grader who excels in reading, is highly engaging, and knows a great deal of information about a wide variety of subjects.  He likes to work fast, think fast, move fast, and complete his work fast.  Mathematics is not always his favorite subject and he often shuts down his thinking if he cannot see a solution path quickly.  Here is one of the problems he had done:

Mr. Smith bought 14 new globes that his students could

use in class as they studied Earth.  Each globe cost $76.

How much did the new globes cost in all?

Jared’s answer?  I bet many of you can predict what his answer was.  If you thought that he had written $90, you would be correct.  I had him read the problem aloud and asked why he thought his answer made sense.  His response was, “I did the right thing because 14 plus 76 equals 90.  I did it in my head, but I know it’s right and I even put a dollar sign in front!”

I asked him to draw a picture that represented the problem.  He drew 14 circles to show the globes. When I asked what the cost was for the globes, he wrote 76 under the first one and then did the same under the others.  He then said, “This won’t work.  Look at the problem – it says ‘in all’ and that means you have to add, so the real answer has to be $90.”

My next question was, “How much did two globes cost?”   He immediately replied, “Well, it could be $152 but that can’t be right!  They told me to add!”  I had him continue to work and after he had successfully solved the problem, he looked at me and said with utter conviction and even a bit of indignation, “It’s not my fault!  They put in ‘in all’ so how I am supposed to know I shouldn’t add?”

I know for certain that there isn’t anyone who teaches key words as the only and/or best problem-solving strategy. But the rigidity with which Jared applied the strategy reinforced for me just how limiting and misleading it can be. I continue to work with him with one of my goals being that he understands that the responsibility for making sense of a problem rests with him and that he needs to add to his repertoire of problem-solving strategies to ensure his answers make sense.

1 comment April 27th, 2016

See you at NCSM and NCTM

We will be in San Francisco next week for NCSM and NCTM. Stop by our booth (204 and 932, respectively), to meet some of our authors and receive 25% off our books and videos and to pick up one of our fancy tote bags!

Lucy West will be signing at the NCSM bookstore at 1 p.m. Monday, April 11, then later that afternoon at 4 p.m. at the Stenhouse booth. You can preview her latest video Adding Talk to the Equation here.

At NCTM you can catch up with Jessica Shumway at 11 a.m.  and with Lucy West at 1 p.m. on Thursday, April 14.

Friday is also ShadowCon time, starting at 5 p.m. For details, follow #shadowcon16 on Twitter. Our own Tracy Zager will be there, so be sure to say hello to her!

 

 

 

Add comment April 9th, 2016

PREVIEW NOW: Lucy West’s new video Adding Talk to the Equation

For more than twenty years, Lucy West has been studying mathematical classroom discourse. She believes that teachers need to understand what their students are thinking as they grapple with rich mathematical tasks and that the best way to do so is through talking and listening. Adding Talk to the Equation helps teachers learn how to skillfully lead math conversations so all students stay in the game, stay motivated about learning, and ultimately deepen their understanding.

This video features five case studies filmed in grades 1–6 and shows teachers at various stages in their practice of generating and managing rich mathematics conversations. Lucy emphasizes the progression that occurs as teachers get more comfortable with new talk moves and as they learn to tune in and respond to the math conversations taking place among their students. Although these discussions occur during math instruction, the strategies used to create an environment for respectful, productive discourse can be applied to any subject area.

The video segments examine the importance of creating a safe learning environment; the value of thinking, reasoning, and questioning; the role of active, accountable listening; and the necessity of giving all students a “You can do this” message. Lucy also emphasizes that slowing down, even in the face of time constraints, is crucial for creating a classroom where all students feel they have something to contribute.

The 84-page companion guide includes transcripts of all of the case studies, with detailed commentary from Lucy that gives you a window into her thinking and the complexities of the work she is doing with teachers, as well as her reflections on missed opportunities.

Add comment March 29th, 2016

Previous Posts


New From Stenhouse

Most Recent Posts

Stenhouse Author Sites

Archives

Categories

Blogroll

Classroom Blogs

Tags

Feeds